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Introduction

It has long been known that humans cannot maintain straight
and level flight in the absence of visual cues (Anderson, 1919).
It also has long been known that the human organs of balance not
only fail to give sufficient cues for accurate perception of
position or motion during aviation, but may give erroneous cues
(for overviews see Guedry, 1974 and Benson, 1988). The common
result of insufficient or misperceived cues, whatever their
origin, is a state of spatial disorientation (SD), commonly
defined as the predicament "...when the aviator fails to sense
correctly the position, motion, or attitude of his aircraft or of
himself within the fixed coordinate system provided by the
surface of the earth and the gravitational vertical" (Benson,
1988).

The significance of SD is demonstrated by 32 percent of U.S.
Army class A-C rotary-wing accidents involved SD as the major
contributing factor (Durnford et al., 1995). Many of these
accidents would occur whatever type of instrument display was in
use, since the aircrew are simply not looking at the instruments.
However, there are a number of accidents which involve the
classically disorientating conditions of inadvertent entry to
instrument meteorological conditions (IMC), whiteout or brownout,
and which might be amenable to improved instrument displays.
These accidents represent some 25 percent of U.S. Army rotary-
wing SD accidents, although they constitute a considerably higher
proportion in other groups such as general aviation rotary-wing
accidents (Adams, 1989). 1In addition to these accidents, there
are those in which an easily understood instrument display may
prevent the initial circumstances leading to disaster by either
providing an easy source of information against which aircrew
might check their progress or by providing a simple symbology
which could be superimposed upon external views (as in a head-up
display [HUD]).

Present day helicopter instrument panels are derived from
fixed-wing aircraft and are designed to provide information about
forward flight. They do not give reliable information about
hovering. Even in forward flight, the panels are not easy to
interpret because of the following five standard aircraft
parameters that need to be monitored and integrated: aircraft




attitude, airspeed, altitude, rate-of-climb or rate-of-descent,
and aircraft heading. Some aircrew have difficulty doing this
even during routine instrument flight. The panic associated with
SD makes reading and understanding five separate instruments even
more difficult (Benson, 1988).

Although it is relatively easy to identify the possible
benefits of an improved instrument display in which all five
parameters were integrated, it is less easy to identify a
suitable design. This is particularly true if one accepts the
usual aim of giving the pilot a constant mental image of aircraft
orientation. Under this traditional system, the pilot has to
continually monitor the aircraft's orientation and react with the
appropriate control inputs. Therefore, the pilot needs to gather
information on all aspects of the aircraft's position and motion.

To reduce this workload means moving away from this
traditional aim. A new concept was developed in which the pilot
would be able to specify particular parameters (such as speed or
heading) and then match his control inputs to a simple,
integrated display which would ensure that those parameters were
maintained (or, if necessary, recovered). 1In effect, the concept
was to replace a high level cognitive task with a comparatively
low level tracking task. In the new display, the pilot can check
any parameter at any time (for example, altitude or airspeed),
but is freed from the requirement to continually sample these
parameters to maintain stable flight. Situational awareness is
in no way reduced; the pilot is aware entirely of the aircraft's
orientation, but is spared the burden of monitoring it.

This paper describes the initial results of tests on this
display concept.

Design aims of the novel display

- To produce a simple display which would provide an easy
source of information for reorientation during episodes of SD,
while also providing an adequate source of information for
standard instrument flight.




Figure 1. The novel display.




- To produce a prototype display which could be developed
further as a head-up or injected symbology display.

- To produce a framework which could be used later to give
hover information (either as an integral part of the complete
display or as a switch over function).

Details of the novel display

Figure 1 shows the novel display used in this experiment.
The display has evolved further since it was tested (see
conclusions) .

The central field of the display consists of a series of
squares (themselves arranged in a square) and a small triangle.
The triangle moves across the squares as a function of aircraft
speed and heading. (The x-axis represents heading and the y-axis
speed.) Movement of the triangle along these axes is a
derivative of the orientation functions of pitch and roll since
speed depends on pitch inputs and heading on roll inputs.

Aircraft speed and heading

Fore and aft cyclic movements are used to maintain the
desired aircraft speed by steering the triangle to the midline on
the x-axis. Lateral cyclic movements do the same for the heading
using the y-axis. Thus, if the triangle is kept in the central
box, the aircraft will remain steady on both the desired speed
and heading.

The compass tape across the top gives the actual heading and
the box below the desired heading.

The air speed indicator (ASI) below the central squares
gives a digital readout of aircraft speed. The numbers inside
the lateral squares give the relative speed corresponding to that
position on the y-axis. Similarly, the numbers above and below
the squares give the relative number of degrees away from the
desired heading that is appropriate to that position on the x-
axis.




Because speed and heading are in themselves no absolute
indications of pitch and roll (and aerodynamics makes it
essential that these are controlled), there is a vector that has
its origin in the center of the triangle. As the aircraft
pitches forward, the line extends forwards. As the aircraft
pitches back, the line extends backwards. This vector also is
linked to roll and therefore has a 360° arc of freedom. The
size, as well as the direction, of the vector is resolved from
both pitch and roll, thus making it possible for pilots to
control these parameters. Furthermore, because speed and heading
depend on pitch and roll, this vector points the way that the
triangle shortly will begin to move. Pilots can anticipate speed
and heading changes and use the vector to steer the triangle.

Since this experiment, the vector has been replaced with a
much simpler system which drives the triangle's position through
combinations of roll angle with heading and pitch angle with
speed. Positioning the triangle within the central box now means
that the aircraft will regain and then retain the desired speed
and heading (see recommendations).

Aircraft altitude

Altitude is color coded. The triangle maintains a green
color if the altitude is at the desired level (or up to 100 feet
above), a red color if it is lower, and a blue color if it is
higher. The altimeter to the right of the squares reinforces
height information by showing the specific altitude (in digital
readout form) as well as the difference between the actual
altitude and the desired altitude (in color coded tape form).
Boxes display the current settings for the desired altitude and
pressure setting. The vertical speed indicator (VSI) on the left
of the squares acts in much the same way as the color coded tape
display of the altimeter. It is placed on the left because it is
the instrument that responds most quickly to control inputs from
the collective lever in the pilot's left hand. (Research has
shown that information displays should, where possible, be on the
same side as the relevant control, Hartzell et al., 1983).




Methods

The novel display was tested against a standard instrument
display using a helicopter cockpit mockup with full size controls
linked to a simulator program run on a Silicon Graphics Iris
Indigo XZ machine*. A photograph of the cockpit mockup is at
Figure 2. The standard display used is shown in Figure 3.

For each subject, there were two series of experiments. One
involved recovery from unusual attitudes and the other involved
flying. Subject performance at these tasks was measured. 1In
addition, the use of attentional resources was estimated by
measuring performance at a secondary task involving the
identification of high or low tones.

Unexpected software and hardware limitations meant that it
was not possible to begin an episode of simulated flight in an
unusual attitude. (Altitude, speed, and rate-of-climb or rate-
of-descent could be varied at the start of each episode, but
neither roll nor pitch could be.) This meant that only static
displays were used in the experiments involving recovery from
unusual attitudes. Similar limitations prevented us recording
moment-to-moment flight path data, and so measurements in the
flying experiments were restricted to how close subjects came to
achieving the desired flight path by the end of each session.

Recovery from unusual attitudes

Subjects were exposed to a series of eight static panels
representing unusual aircraft attitudes. They then were exposed
to a second series using the other instrument panel. Half the
subjects used the standard display first, while the other half
used the new display. Unknown to the subjects, the second set of
unusual attitudes was the same as the first, but in reversed
order so as to counterbalance any learning effects when data were
pooled across subjects. These unusual attitudes involved pitch
ranges from -30° to +30°, roll ranges from 60° left to 60° right,
airspeeds from 35 kts to 135 kts, and vertical speed rates from

*See manufacturers' list.




Figure 2. The cockpit mockup.




The standard display.

Figure 3.
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2000 fpm climb to 2000 fpm descent. Figures 4 and 5 show an
identical unusual attitude as it would be presented on the
standard and the novel displays.

Subjects had 15 seconds to respond to the display by making
control movements in the appropriate direction for bringing the
helicopter back to straight-and-level flight (phase 1). This
task required the subject to respond to pitch, roll, and rate-of-
climb or rate-of-descent. An observer monitored their control
inputs in terms of cyclic fore/aft, cyclic left/right, and
collective up/down. The observer also monitored any indecision,
as evidenced by corrections to the control inputs.

During this 15-second period, subjects also were exposed to
the secondary task described later.

After the 15 seconds, the display was removed from sight and
subjects were asked what further control inputs would be
necessary to return the aircraft to a heading of north, an
altitude of 2000 feet, and a speed of 100 kts (assuming they had
achieved straight-and-level flight at the heading, speed, and
altitude originally displayed). This task was phase 2 and
required subjects to remember information on the display
concerning heading, altitude, and speed.

The flying task

The flying task consisted of four flights with each display.
Each flight lasted 1 minute, during which period subjects had to
achieve the following parameters:

- 100 kts (from a starting speed of either 80 kts or 120
kts)

- 2000 ft (from a starting point of 1500 ft or 2500 ft)
- A heading of west or east (from a starting point of north)

Subjects also were exposed to the secondary task for the
full period.

11




Figure 4. An unusual attitude as displayed on the standard
panel.
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Figure 5. An unusual attitude as displayed on the new display.
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As for the unusual attitude part of the experiment, the
order in which the displays were used were balanced across
subjects. Each subject was exposed to the same starting
parameters twice (once with each display).

Because it proved difficult to record moment-to-moment
flight data, these episodes were scored on how close subjects
came to achieving the desired parameters at the end of the minute
period and on their scores for the secondary task. In addition,
final roll angle, pitch angle, and rate-of-climb or descent were
measured.

The secondary task

The secondary task was incorporated into the experiments to
give a measure of the spare attentional resources available to
subjects while they were performing the primary tasks. An
American Computer Zero Input Tracking Analyzer* (ZITA) machine
was used for this task. This machine has been extensively
described in previous studies (see, for example, Simmons et al.,
1989) .

The subject was required to identify a high or a low tone by
pressing an appropriate button on the cyclic handgrip before the
next tone was played. Tones were played at a rate of 1 per
second. The total number of responses, together with the numbers
of correct and incorrect responses, were used as dependent
measures.

Subject questionnaires

Subjects were asked to rate the ease of use of the new
display against the standard display by selecting one of the
following options:

- The new display was much more difficult to use than the
standard display.

- The new display was more difficult to use than the
standard display.

14




- There was no difference in the ease of use of the two
displays.

- The new display was easier to use than the standard
display.

- The new display was much easier to use than the standard
display.

Subjects did this immediately after the unusual attitudes
part of the study and again immediately after the flying part of
the study. In the latter part, pilot subjects also were asked
how they would rate the new display if they had flown as many
hours using the new display as they had previously flown using
the standard form of panel.

Subjects

Five aircrew in current flying practice and five nonaircrew
subjects were used.

Each subject was in normal health and free from medication.
All were able to easily hear and identify the low and high tones
of the secondary task.

Subjects were given both a written and an oral brief. All
signed volunteer consent forms.

Training and experimental profile

Subjects were given a minimum of 1 hour of training on the
helicopter simulator program, the two display formats, and the
secondary task. Training began with a general explanation of the
two displays. Subjects then were taken through the specific
information provided by the two displays with regard to airspeed,
heading, altitude and rate-of-climb (or descent). Once they
confirmed they understood the information given by the displays,
they were shown how changes in pitch and roll initiated by cyclic
changes affected the attitude indicator on the standard panel and
the yellow vector line on the novel display. Then, they also
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were shown how changes in pitch and roll had secondary effects on
speed, heading and rate of climb (or descent). During this phase
they were encouraged to play with the cyclic controls until they
felt familiar with how the displays responded. Next, they were
shown how movements of the collective affected the displays in
terms of rate of climb (or descent) and altitude. Again they
were encouraged to play with the collective. Once they felt
comfortable with the effects of moving the collective, they were
asked to put cyclic and collective movements together to see the
influence on the displays. Periods of rest were offered as and

when needed.

Subjects only went forward to the next phase once they had
confirmed they felt generally comfortable flying the two displays
and, that they understood the information provided by the
displays and how control inputs affected them. In this phase,
they were given further training on how the displays provided
information about unusually extreme aircraft attitudes, beginning
with whichever display they would be using second in the
experiment. The static displays used in training were similar to
those used in the experiments, but care was taken to ensure that
none of the experimental unusual attitudes were used for
training. Subjects were trained until they demonstrated on at
least four consecutive occasions that they could interpret
correctly unusual attitudes involving deviations in airspeed,
rates-of-climb (or descent), altitude and heading, and that they
could integrate these with the information from the attitude
indicator (or yellow vector) to derive the required control
inputs to recover the aircraft to safe and level flight and then
to the original flight path. Once they had confirmed they felt
comfortable with the task using this first display, they received
training on the other. After demonstrating competence with the
second display, they entered the study. Following the first set
of unusual attitudes, they received refresher training on the
other display until they again confirmed that they felt
comfortable enough to be exposed to the second set of unusual

attitudes.

Prior to the flying part of the study, they were given
further training and practice on maneuvering the simulator using
the display most recently used for the unusual attitudes. No
accuracy standards were required of subjects, other than the
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ability to fly the aircraft for a period of 2 minutes or more
without crashing since it was expected that proficiency would be
highly variable. When they confirmed that they felt comfortable
with this, they performed the four flying tasks with this
display. They then received further training on maneuvering
using the other display, and when comfortable with this, they
performed the same four flying tasks again.

—.....All subjects were introduced to the secondary task during |

the period they first started putting cyclic and collective
control movements together to fly the simulator. Subsequently,
the secondary task was introduced into the training for each
experimental section as subjects began to demonstrate competence.

Subjects were told they would be scored on all parts of the
experiment and should spread their attention across as many
aspects as possible (with the single exception that they could,
if necessary, concentrate on avoiding a crash during the flying
phase) .

Results
Objective results

The results for each subject were collapsed to give a mean
for each dependant variable (except in the case of control
errors, when the errors were summed). They then were analyzed in
two groups, those resulting from the unusual attitude portion of
the study and those from the flying part of the study.

Unusual attitudes

Shapiro-Wilks' tests showed that the means on the secondary
(ZITA) task were normally distributed (e.g., p>0.0897 for the
correct ZITA responses using the standard display, p>0.820 for
correct responses using the new display). Therefore, these were
analyzed using ANOVA with one grouping variable (pilots and non-
pilots) and one repeated measure (standard display or new
display) .
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The pattern of control errors, however, never came close to
a normal distribution, even after various transformations (e.g.,
Shapiro-Wilks' p<0.0.0004 for errors on phase 2 after log
transformation). Therefore, these results were analyzed using
Wilcoxon tests.

Table 1 gives the mean ZITA responses grouped by display and
pilot status. Univariate ANOVA showed a strong display effect on
both the total number of responses and the number of correct
responses (p=0.003 and p=0.004 respectively). There was no
significant display effect on the number of incorrect responses
and no pilot effect on any of the variables.

Table 1.
Secondary task (zita) scores while recovering from unusual attitudes.

Mean total ZITA score Mean correct ZITA score
Standard New display Standard New display
display display
Pilots 9.65 11.88 6.75 9.38
Nonpilots 10.74 11.90 8.59 9.34
All sS 10.19 11.89 7.67 9.36

The scores given are mean total score and mean correct score broken down by
pilot and display groups.

During the experiment, control error data were collected
according to the control involved (cyclic or collective) and the
direction of input, as well as by the task (recovery to straight
and level flight, or recovery to the original flight path). The
number of corrections to control inputs during the first phase
also was recorded. 1In order to limit the number of statistical
tests performed, these errors were summed across the two
different groups (pilot and nonpilot), providing a set of paired
data for a single Wilcoxon* test (standard display versus new
display). These total numbers of control errors are given in
Table 2 below, together with the totals for the different phases.
The Wilcoxon test on the grand total showed a significant
reduction in control errors when the new display was used
(p=0.0077) .
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Table 2.
Numbers of control errors made during the recovery
from unusual attitudes summed across subjects.

Total errors Errors in 1st Corrected Errors in 2nd
phase inputs phase

'old! 'new' 'old! '‘new!' ‘old’ 'new' 'old! 'new’

panel panel panel panel panel panel panel panel
Pilots 67 38 28 22 14 5 25 11
Non- 90 27 40 13 18 8 32 6
pilots
All ss 157 65 68 35 32 15 57 17

Further investigation (by grouping the data according to
pilot/nonpilot status and phase of recovery) revealed that these
significant differences lay primarily in the nonpilot group.
There were no significant differences in the pilot data when
taken alone, whereas the nonpilot data showed display differences
in both the number of corrected control inputs and the number of
errors made on phase 2 (at the p=0.043 level). Adding the pilot
data strengthened the significance level in both these groups
(p=0.019 for the former and p=0.017 for the latter), indicating
that the pilot data was in a similar direction even if it did not
reach significance.

Flving data

Secondary task scores during the flying portions of the
experiment, like those during the unusual attitudes, showed
normal distributions (e.g., Shapiro-Wilks' p>0.6 for correct ZITA
scores when using the standard display, and p>0.94 when using the
new display). These scores were analyzed using ANOVA.

Mean errors in accuracy at achieving the desired final
flight parameters were not, on the whole, normally distributed
(e.g., the Shapiro-Wilks' p value for the final roll angle when
using the standard display was <0.0001). Log transformation was
able to bring them into an acceptably normal range (e.g., the new
Shapiro-Wilks' p value for the log of the final roll angle when
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using the standard display was 0.41). The sole exception was for
the final pitch angle when using the standard display, whose
Shapiro-Wilks' recovered only to p=0.03 from an initial value of
p<0.0000. ANOVA was performed on the log transformations.

Table 3 gives the mean secondary task (ZITA) scores for the
flying portion of the study. ANOVA revealed a significant
display effect on the number of incorrect responses (p=0.023) but
no pilot effect. There were no significant effects on the number
of correct responses or on the total number of responses,
although the display effect on the number of correct responses
nearly reached significance (p=0.08).

Table 3.
Mean scores on the secondary task (ZITA) during the flying portion
of the study broken down by display and pilot status.

Incorrect ZITA responses Correct ZITA responses

Standard New Standard New
display display display display
Pilots 12.95 10.35 31.33 35.15
Nonpilots 11.10 8.80 30.15 32.65
All ss 12.03 9.58 30.74 33.90

Table 4 shows the final accuracy in achieving the desired
flight parameters broken down by display and pilot status. ANOVA
on the log of these values revealed display effects in airspeed
and heading (the new display was associated with more accurate
airspeed but less accurate heading, p=0.038 and p=0.043,

respectively). Pilot effects were shown on heading and altitude
(pilots were more accurate than nonpilots, p=0.035 and p=0.0074,
respectively) .  No effects could be shown on rate-of-climb or

descent, pitch angle or roll angle.
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Final

Table 4.

accuracy in achieving desired flight parameters
broken down by display and pilot status.

Airspeed (kts)

Standard display

New display

Range Mean Range Mean
Pilots 7-38 16.0 4-28 10.75
Nonpilots 18-45 26.3 1-27 12.2
All sS 7-45 21.1 1-28 11.5
Heading (degrees)
Pilots 2-9 6.0 4-42 14.8
Nonpilots 6-39 19.0 8-83 37.0
All SS 2-39 12.5 4-83 26.1
Altitude (feet)
Pilots 129-337 229 270-415 335
Nonpilots 224-934 602 361-1060 667
All sS 129-934 415 270-1060 501
Rate of climb or descent (feet per minute)
Pilots 4-20 12.4 4-34 15.8
Nonpilots 10-59 26.6 7-28 15.9
All 8s 4-59 19.5 4-34 15.9
Pitch angle from zero (degrees)
Pilots 2-6 3.8 3-9 5.5
Nonpilots 3-35 10.9 2-7 4.5
All SS 2-35 7.3 2-9 5.0
Roll angle from zero (degrees)
Pilots 1-6 3.9 4-10 6.6
Nonpilots 1-31 9.6 2-6 4.0
All sS 1-31 6.8 2-10 5.3
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Subjective questionnaires

Pilots

Four out of the five pilots rated the new display as much
easier to use for recovery from unusual attitudes; the other
marked it as easier.

Given their present level of training and experience, three
pilots considered the new display less easy to fly with than the
standard panel; two considered it to be no different.

When considering how the new panel display would compare
against the standard panel, given equal flying experience with
both displays, one pilot considered the new panel would be much
easier to use than the standard panel. Two considered it would
be easier and one considered there would be no difference. One
failed to record an opinion.

Nonpilots

In an identical result to the pilot group, four out of the
five nonpilots marked the new display as much easier to use for
recovery from unusual attitudes; the other marked it as easier.

Given their present level of training and inexperience, two
nonpilots considered the new display much easier to fly with than
the standard panel, two considered it to be easier, and one
considered it to be no different.

Discussion
Recovery from unusual attitudes

It is recognized that a static display of an unusual
attitude is unrealistic in that aircrew receive a great deal of
information from the manner in which their instruments change.
Nonetheless, it is considered that the tests carried out here
gave a fair indication of the ease with which subjects were able
to extract information concerning flight parameters from each
display. Further testing with dynamic displays is, of course,
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essential and must be a future aim. (Such testing was the
original aim of this study.)

The pattern of benefits associated with the new display was
similar for both pilots and nonpilots. Although the ANOVA showed
no pilot effects on ZITA scores, the benefits in the pilot group
tended to show most in better ZITA scores, while the benefits in
the nonpilots tended to show most in reduced control input error
rates. ©Nonpilots were included in the study because of the
potential bias in aircrew associated with their many hours of
instrument flying using a standard panel. It was postulated that
this bias might negate the possible workload benefits associated
with the new display. Therefore, it is interesting and
reassuring that the reduced workload (as implied by improvements
in the secondary task scores) was observed mostly in the pilots.
The findings in nonpilots suggest that the unusual attitude task
was of sufficient difficulty for them to allocate a relatively
fixed level of attentional resources to the task (whatever
display was used). Also, this is suggested because, for them,
the advantages of the new display showed up in a much reduced
error rate.

These patterns lend objective evidence to support the
questionnaire results, which showed that both pilots and non-
pilots found the new display considerably easier to interpret
than the standard panel.

During the experiments, one limitation with the new display
was noted, namely that the vector could confuse rather than
simplify. Subjects (both pilots and nonpilots) occasionally
applied control inputs in the opposite direction to the vector
line. The original intention of the display design was to create
a simple put-the-triangle-in-the-box display without any need for
vectors. This has been achieved subsequent to the experiment by
linking the triangle's movement to pitch and roll and then
adapting it to speed and heading. The triangle moves 1 cm for
every 10° of roll (on the x-axis) or 10° of pitch (on the y-
axis). This movement is not capped. The triangle also moves 1
cm for every 20° of deviation from the desired heading (x-axis)
and 20 kts of deviation from the desired airspeed (y-axis).

These latter movements are capped to a maximum of 30° heading
difference and 25 kts airspeed difference. (These figures are
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arbitrary experimental values and could be varied as needed).
The result is that if the pilot returns the triangle to central
square and keeps it there, the aircraft will regain and then
retain its desired heading and speed using no more than a 15°
angle of bank and 12.5° angle of pitch. The new version of the
display should allow an even greater reduction in workload when
dealing with unusual attitudes and should be as easy (or easier)
to fly. Only further experimentation can confirm this.

Flying

The principal concept behind the new display was to provide
a "get-me-out-of-trouble" device. Nonetheless, it was important
to find out whether the display could be used for normal
instrument flight, and if so, what advantages and disadvantages

might apply.

Overall, there appeared to be little difference in flying
performance using the two displays. There were two significant
results implying benefits from using the new display, namely
improved speed control and fewer incorrect ZITA responses. There
was one disadvantage, namely reduced heading control. With
regard to heading control, two factors should be noted:

- The x-axis across which the triangle moved (from one side
of the set of squares to the other) represented the whole 360°
compass arc. The scale therefore was small and accuracy was
difficult to obtain. The modifications to the display since the
experiment have rectified this.

- Should the display ever be introduced into an aircraft,
the intention would be that the pilot has the option of dialing
up any required changes in heading and then flying the triangle
back into the central box to attain that heading. In this
experiment, software limitations prevented this strategy and
subjects had to fly the triangle out of the box to a point that
equated to a heading 90° from the original. This may have
influenced the results.

Therefore, it seems likely that the new display, when
reconfigured, will be no worse as a flying aid than the standard
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panel and may well be better. This is supported by the
subjective opinions cf both the pilot and nonpilct groups. The
objective results of this experiment are limited, however, by
being based solely on the final parameters achieved. They give
no information on aircraft control during each flight, and
further experiments involving continual data collection are
necessary. (No obvious differences in aircraft control were
noted by the experimenters, and the only aircraft crash occurred
when a nonpilot subject was using the standard panel.)

Laboratory results versus real life requirements

This experiment was carried out in a laboratory setting
using a static helicopter mockup. Real flying takes place in
very different conditions, and it is dangerous to assume that a
source of flight information that appears better in a laboratory
will necessarily prove better in the air. The next step in the
development of this display should utilize a more realistic
environment such as a full motion simulator (or a real aircraft).

It should be noted, in particular, that this new display
intentionally gives no indication of the position of the horizon.
Aircrew flying visually do so by orientating themselves to the
horizon. If they fly into marginal weather or into mountainous
terrain (where horizon lines may be difficult to determine), they
may check their instruments to confirm the attitude of their
aircraft. The new display will give no immediate confirmation of
the position of the horizon, although it could easily be adapted
to do so.

Adapting the display for use in a HUD or NVD

No attempt was made in this experiment to superimpose the
display on a scene depicting the outside world. However, the
display was designed with that use in mind, and further
development along this path now might be warranted. The central
squares, and all the other elements, could be replaced or adapted
in such a way that they would be less obscuring.
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Adapting the display to provide hover information

Similarly, no attempt was made to provide hover information
on the display. However, the design easily could be adapted for
this purpose and further development along these lines might also
be beneficial. It is envisaged that the display would be re-
configured to give hover information by dialing the desired
airspeed to zero. Airspeed figures then would become groundspeed
figures and movement of the triangle from the central box would
represent roll and pitch angles modified by the distance moved
from the hover spot. The same sort of algorithms could be used
as for the flight mode. This particular development would
require accurate drift information from GPS or other systems.
Hover mode would have to be differentiated clearly and visibly
from flight mode to avoid aircrew confusion.

Conclusions

The results of this experiment provide strong evidence that
the concepts behind the new display are workable, and that the
new display would make recovery from unusual attitudes (and quite
probably instrument flying) easier than when using the standard
panel.

However, limitations in the experimental design caused by
software and hardware difficulties mean further testing is
desirable. This testing should take place in an environment that
is as realistic as possible and should use the postexperimental
modifications to the display.

The display should be developed further to make it possible
to superimpose it on outside scenes. In addition, it should be
developed to be able to provide information on hovering.
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List of manufacturers

American Computer and Electronics Corporation
Gaithsburg, MD 20879

Coryphaeus Software
985 University Avenue, Suite 31
Los Gatos, CA 95030

Silicon Graphics Computer Systems
2011 North Shoreline Boulevard
Mountain View, CA 94039-1389
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